MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells.

نویسندگان

  • Bertram Bleck
  • Gabriele Grunig
  • Amanda Chiu
  • Mengling Liu
  • Terry Gordon
  • Angeliki Kazeros
  • Joan Reibman
چکیده

Air pollution contributes to acute exacerbations of asthma and the development of asthma in children and adults. Airway epithelial cells interface innate and adaptive immune responses, and have been proposed to regulate much of the response to pollutants. Thymic stromal lymphopoietin (TSLP) is a pivotal cytokine linking innate and Th2 adaptive immune disorders, and is upregulated by environmental pollutants, including ambient particulate matter (PM) and diesel exhaust particles (DEP). We show that DEP and ambient fine PM upregulate TSLP mRNA and human microRNA (hsa-miR)-375 in primary human bronchial epithelial cells (pHBEC). Moreover, transfection of pHBEC with anti-hsa-miR-375 reduced TSLP mRNA in DEP but not TNF-α-treated cells. In silico pathway evaluation suggested the aryl hydrocarbon receptor (AhR) as one possible target of miR-375. DEP and ambient fine PM (3 μg/cm(2)) downregulated AhR mRNA. Transfection of mimic-hsa-miR-375 resulted in a small downregulation of AhR mRNA compared with resting AhR mRNA. AhR mRNA was increased in pHBEC treated with DEP after transfection with anti-hsa-miR-375. Our data show that two pollutants, DEP and ambient PM, upregulate TSLP in human bronchial epithelial cells by a mechanism that includes hsa-miR-375 with complex regulatory effects on AhR mRNA. The absence of this pathway in TNF-α-treated cells suggests multiple regulatory pathways for TSLP expression in these cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diesel exhaust particle-treated human bronchial epithelial cells upregulate Jagged-1 and OX40 ligand in myeloid dendritic cells via thymic stromal lymphopoietin.

Ambient particulate matter, including diesel exhaust particles (DEP), promotes the development of allergic disorders. DEP increase oxidative stress and influence human bronchial epithelial cell (HBEC)-dendritic cell interactions via cytokines, including thymic stromal lymphopoietin (TSLP). Upregulation of TSLP results in Th2 responses. Using primary culture HBEC and human myeloid dendritic cell...

متن کامل

Fine urban atmospheric particulate matter modulates inflammatory gene and protein expression in human bronchial epithelial cells.

Ambient particulate matter (PM) is known to induce inflammation in the respiratory tract of exposed subjects. The aim of the present study was to detect, in bronchial epithelial cells, candidate inflammatory genes exhibiting transcriptional modifications following urban PM2.5 exposure. Paris urban PM2.5 sampled either at a curbside or a background station in winter and in summer was tested in c...

متن کامل

Size fractions of ambient particulate matter induce granulocyte macrophage colony-stimulating factor in human bronchial epithelial cells by mitogen-activated protein kinase pathways.

Environmental pollutants, including ambient particulate matter (PM), increase respiratory morbidity. Studies of model PM particles, including residual oil fly ash and freshly generated diesel exhaust particles, have demonstrated that PM affects inflammatory airway responses. Neither of these particles completely represents ambient PM, and therefore questions remain about ambient particulates. W...

متن کامل

Disruption of MicroRNA Expression in Human Airway Cells by Diesel Exhaust Particles Is Linked to Tumorigenesis-Associated Pathways

BACKGROUND Particulate matter (PM) is associated with adverse airway health effects; however, the underlying mechanism in disease initiation is still largely unknown. Recently, microRNAs (miRNAs; small noncoding RNAs) have been suggested to be important in maintaining the lung in a disease-free state through regulation of gene expression. Although many studies have shown aberrant miRNA expressi...

متن کامل

The cellular impacts of diesel exhaust particles: beyond inflammation and death.

E pidemiological studies have demonstrated an association between exposure to ambient particulate matter (PM) and increasing respiratory mortality and morbidity [1]. In western countries, exhausts from diesel and gasoline vehicles constitute a major portion of PM and have been suspected of increasing the risk of lung cancer [2]. An important component of PM is the diesel exhaust particle (DEP),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 190 7  شماره 

صفحات  -

تاریخ انتشار 2013